On the \rho-subdivision number of graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total Roman domination subdivision number in graphs

A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...

متن کامل

On the fixed number of graphs

‎A set of vertices $S$ of a graph $G$ is called a fixing set of $G$‎, ‎if only the trivial automorphism of $G$ fixes every vertex in $S$‎. ‎The fixing number of a graph is the smallest cardinality of a fixing‎ ‎set‎. ‎The fixed number of a graph $G$ is the minimum $k$‎, ‎such that ‎every $k$-set of vertices of $G$ is a fixing set of $G$‎. ‎A graph $G$‎ ‎is called a $k$-fixed graph‎, ‎if its fix...

متن کامل

On the saturation number of graphs

Let $G=(V,E)$ be a simple connected graph. A matching $M$ in a graph $G$ is a collection of edges of $G$ such that no two edges from $M$ share a vertex. A matching $M$ is maximal if it cannot be extended to a larger matching in $G$. The cardinality of any smallest maximal matching in $G$ is the saturation number of $G$ and is denoted by $s(G)$. In this paper we study the saturation numbe...

متن کامل

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

On the total domination subdivision number in graphs

A set S ⊆ V of vertices in a graph G = (V,E) without isolated vertices is a total dominating set if every vertex of V is adjacent to some vertex in S. The total domination number γt(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdγt(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discussiones Mathematicae Graph Theory

سال: 2021

ISSN: 1234-3099,2083-5892

DOI: 10.7151/dmgt.2412